สถาบันข้อมูลขนาดใหญ่ (องค์การมหาชน)

Logo BDI For web

หรือว่า AI จะไม่เก่งจริง!! – สาเหตุที่ทำให้ ​AI ยังไม่ถูกนำมาใช้ในชีวิตจริงมากเท่าที่ควร

Nov 4, 2022
AI คือ

ตั้งแต่การเรียนรู้เชิงลึก (Deep Learning) ถูกพัฒนาขึ้น ปัญญาประดิษฐ์ก็เข้ามามีบทบาทในชีวิตมนุษย์อย่างมาก ในหลายรูปแบบ ตั้งแต่ในแอปพลิเคชันบนสมาร์ตโฟน กล้องวงจรปิดที่ใช้ตามบ้าน แม้แต่โปรโมชันที่แบรนด์สินค้าเสนอให้กับเราในฐานะลูกค้าในหลายครั้งก็เป็นผลจากการใช้ปัญญาประดิษฐ์ เพื่อประมวลผลทางสถิติว่าโปรโมชันแบบไหนที่แต่ละคนจะตัดสินใจซื้อมากที่สุด ซึ่งในหลายครั้งมันก็ทำให้ลูกค้าจ่ายเงินซื้อสินค้าจากการแนะนำสินค้าได้ตรงใจ หรือแม้กระทั่งการแนะนำวิดีโอในแอปพลิเคชัน TikTok หรือ YouTube เพื่อดึงดูดความสนใจของผู้ใช้ให้รับชมคอนเทนท์ที่ชื่นชอบในระยะเวลาที่ยาวนานที่สุด โดยใช้เทคนิคต่าง ๆ อาทิเช่น Computer Vision เพื่อให้ระบบสามารถแยกแยะเนื้อหาของวีดีโอ และ Natural Language Processing ที่นำมาใช้แยกแยะเนื้อหาที่เป็นภาษา ( ai คือ อะไร )

ความสามารถของปัญญาประดิษฐ์ที่มนุษย์สร้างขึ้นถูกพัฒนาจนเริ่มที่จะเก่งกว่ามนุษย์ในหลายทักษะ หนึ่งในงานทดลองที่เป็นรู้จักคือการสอนให้คอมพิวเตอร์เล่นเกมเพื่อเอาชนะมนุษย์ หรือแม้กระทั่งในเกมที่ซับซ้อนอย่างหมากล้อม ก็สามารถเอาชนะมนุษย์ไปได้จนเป็นข่าวดังไปทั่วโลก จนในบางครั้งก็ทำให้เกิดความหวาดกลัวในปัญญาประดิษฐ์ว่ามันจะทำอะไรที่เป็นอันตรายต่อมนุษย์เหมือนกับในภาพยนตร์ชื่อดังหลายเรื่องหรือไม่ สื่อสังคมออนไลน์ถึงกับตื่นตระหนกกับข่าวที่ปัญญาประดิษฐ์ของ Facebook สร้างภาษาของตัวเองขึ้นมา และให้ความเห็นกันไปต่าง ๆ นานา

ในฐานะของผู้ที่มีประสบการณ์วิจัยเกี่ยวกับปัญญาประดิษฐ์มา ผู้เขียนสามารถบอกได้อย่างมั่นใจว่า “ปัญญาประดิษฐ์จะยังไม่ครองโลกในเร็ว ๆ นี้แน่นอน” เพราะความเก่งกาจจากการเรียนรู้ข้อมูลของปัญญาประดิษฐ์นั้นยังมีข้อจำกัดอย่างมาก ตัวอย่างหนึ่งที่เห็นได้ชัดเจนคือการที่เทคโนโลยี Self-Driving Car อย่างเต็มรูปแบบ (ไม่นับระบบช่วยเหลือในการขับอย่าง Cruise Control) ถูกเคยถูกพูดถึงกันมาอย่างยาวนานในวงการวิจัยนั้น ในขณะที่เขียนบทความนี้ (ตุลาคม 2565) เทคโนโลยีนี้ถูกใส่เข้ามาในรถยนต์ของผู้ให้บริการเพียงไม่กี่รายที่มีความสามารถในการวิจัยเทคโนโลยีที่ล้ำสมัยอย่างเช่น Tesla ซึ่งก็ยังมีข้อจำกัดอยู่ และก็ยังมีรายงานการเกิดอุบัติเหตุอยู่บ้างเช่นกัน

บทความนี้เราจะมาดูกันว่าข้อจำกัดอะไรบ้างที่ปัญญาประดิษฐ์ต้องก้าวข้ามไปให้ได้ และตัวอย่างของความอ่อนด้อยของปัญญาประดิษฐ์ในสิ่งที่เรื่องง่ายสำหรับมนุษย์

1. Domain Shift – โมเดลเรียนรู้และเก่งในเรื่องที่มีข้อมูลเท่านั้น และประสิทธิภาพลดลงอย่างมากเมื่อสภาพแวดล้อมเปลี่ยนไป

เป็นเรื่องจริงที่ปัญญาประดิษฐ์นั้นเรียนรู้จนเก่งในหลายเรื่อง แต่ความเก่งนั้นก็จำกัดอยู่กับสิ่งแวดล้อมที่มันเคยเรียนรู้มาเท่านั้น เมื่อสภาพแวดล้อมเปลี่ยนไปจากเดิม ประสิทธิภาพในการทำงานและการตัดสินใจก็จะเปลี่ยนไปอย่างมาก ปัญหานี้เป็นที่รู้จักกันในหลายชื่อเรียก เช่น Domain Shift, Distribution Shift, และ Data Drift เป็นต้น ซึ่งต่างก็มีความหมายที่คล้ายกัน คือการที่โดเมน (ขอบเขต) ของข้อมูลที่ปัญญาประดิษฐ์รับเข้าระบบ (Input) เปลี่ยนแปลงไปจากเดิม

AI คือ
Segmentation and Recognition Using Structure from Motion Point Clouds, ECCV 2008 (pdf)
Brostow, Shotton, Fauqueur, Cipolla (bibtex)

ตัวอย่างเช่นถ้าเราให้โมเดลเรียนรู้ข้อมูลที่มีการแจกแจงแบบหนึ่ง แต่พอนำโมเดลไปใช้จริงกลับมีการแจกแจงอีกแบบหนึ่ง ดังที่เห็นจากในตัวอย่างภาพการแจกแจงด้านบน ก็จะมีความเสี่ยงสูงที่การนำไปใช้จริงจะลดประสิทธิภาพของโมเดลนี้ หรือในกรณีของข้อมูลภาพที่เป็นถนนและสภาพจราจร การที่ข้อมูลที่ใช้สอนปัญญาประดิษฐ์ส่วนมากจะถูกเก็บมาจากช่วงเวลากลางวัน ซึ่งสภาพแสงต่างจากกลางคืนอย่างชัดเจน เมื่อนำมาใช้ประมวลผลกับภาพที่ได้ในเวลากลางคืนก็มีแนวโน้มที่ความถูกต้องในการทำงานจะลดลง การสอนระบบด้วยภาพในเมือง แต่นำไปใช้กับภาพถนนในชนบท หรือแม้แต่ในเงามืดที่แสงน้อยเองก็เช่นกันตามภาพที่ด้านล่าง

AI คือ
Semantic Object Classes in Video: A High-Definition Ground Truth Database (pdf)
Pattern Recognition Letters (to appear)
Brostow, Fauqueur, Cipolla (bibtex)

2. Catastrophic Forgetting – เรียนเรื่องใหม่ ลืมเรื่องเก่า

การแก้ปัญหาในข้อที่ 1 แบบง่าย ๆ ก็คือการนำเอาข้อมูลในสิ่งแวดล้อมปัจจุบันที่ปัญญาประดิษฐ์พบเจออยู่ในขณะนั้นมาสอนระบบในทันที เพื่อให้มันสามารถปรับตัวกับสภาพแวดล้อมใหม่ ซึ่งก็สร้างปัญหาใหม่ขึ้นมาถึง 2 เรื่อง เรื่องแรกคือบริษัทที่เป็นผู้ให้บริการก็ต้องจ้างคนมาเพื่อสร้าง Label (หรือก็คือเฉลยของคำถาม) ในการสอนปัญญาประดิษฐ์ ซึ่งในงานประเภท Semantic Segmentation จะพบว่าการสร้าง Label นั้นค่อนข้างยาก ใช้เวลานาน และนำมาซึ่งต้นทุนที่สูงขึ้น

เรื่องที่สองที่จะเจอคือปัญหาที่เรียกว่า Catastrophic Forgetting หรือคือการเรียนเรื่องใหม่แล้วลืมเรื่องเก่า ปัญหานี้เกิดขึ้นเมื่อเรานำเอาข้อมูลใหม่เข้ามาสอนให้กับปัญญาประดิษฐ์เพื่อให้สามารถประมวลผลในโดเมนปัจจุบันได้ถูกต้อง แต่เมื่อนำโดเมนของข้อมูลเปลี่ยนกลับไปเป็นโดเมนเดิมในตอนต้น ความถูกต้องในการประมวลผลก็จะลดลง เพราะปัญญาประดิษฐ์ได้ทำการเรียนรู้กับข้อมูลในโดเมนใหม่และได้ลืมความรู้ในโดเมนเก่าไปแล้ว

3. Out-of-Distribution – ปัญญาประดิษฐ์มักไม่รู้ตัวว่าตนเองไม่มีความรู้

การใช้งานปัญญาประดิษฐ์ในโลกความเป็นจริงที่เป็นสิ่งแวดล้อมแบบเปิด (Open World) มักจะมีสิ่งที่ระบบไม่เคยเรียนรู้มาก่อนอยู่เสมอ โดยเฉพาะเมื่อพูดถึงโมเดลเพื่อการจำแนกประเภท (Classification Model) ที่ต้องระบุหมวดหมู่ (Class) ของการจำแนกที่ชัดเจนตั้งแต่ตอนที่นำข้อมูลมาเพื่อสอน ในขณะที่เมื่อนำเอาไปใช้จริงแล้วมักจะเจอกับข้อมูลที่อยู่ในหมวดหมู่ใหม่ที่ไม่เคยเรียนรู้มาก่อน สิ่งนี้เป็นเพราะในงานข้อมูลบางประเภท เช่น ภาพ หรือภาษา มีหมวดหมู่ที่ไม่แน่นอน เราไม่สามารถนำเอาทุกความเป็นไปได้ของข้อมูลมาสอนให้กับปัญญาประดิษฐ์ได้ หรือถ้าทำได้ เมื่อเวลาผ่านไปย่อมมีข้อมูลใหม่เกิดขึ้นอยู่เสมอ ดังนั้นการที่ระบบสามารถระบุได้เมื่อเจอข้อมูลที่แตกต่างออกไปจากเดิมนั้นเป็นสิ่งสำคัญมาก

ถ้าเป็นปัญญาประดิษฐ์ที่ใช้แยกแยะสายพันธุ์สุนัขจากภาพ เมื่อผู้ใช้นำภาพของแมวหรือนกมาให้จำแนกสายพันธุ์ ก็ควรจะต้องบอกได้ว่าสิ่งนั้นไม่ใช่สุนัข หรือถ้ามีสายพันธุ์ใหม่ที่ไม่เคยเจอ ก็ควรจะบอกผู้ใช้ได้ว่าไม่รู้จักสายพันธุ์นั้น ในกรณีของระบบที่เป็น Self-Driving Car อาจจะมีการใช้ปัญญาประดิษฐ์ที่เรียนรู้วัตถุต่าง ๆ จากภาพ เมื่อเจอวัตถุหรือสิ่งมีชีวิตบนท้องถนนที่ไม่เคยเจอมาก่อน ก็ควรจะออกแบบให้สามารถส่งต่อความไม่มั่นใจดังกล่าวให้กับมนุษย์ ให้คนขับเป็นผู้ตัดสินใจเองว่าจะขับต่อไป หรือเลี่ยงเส้นทาง

4. Calibration – ค่าความมั่นใจของคำตอบควรจะบอกความน่าจะเป็นที่คำตอบนั้นจะถูกต้อง

แน่นอนว่าไม่มีใครถูกเสมอ การทำนายหรือตอบคำถามของปัญญาประดิษฐ์นั้นก็เช่นเดียวกัน แต่ปัญหาก็คือ บ่อยครั้งที่พบว่าคำตอบของปัญญาประดิษฐ์ในงานจำแนกหมวดหมู่ (Classification) มักมาพร้อมกับค่าความมั่นใจที่มากเกินควร (ค่าความมั่นใจ หรือ Predicted Probability เป็นค่าที่คำนวณออกมากับคำตอบ)

ถ้าค่าความมั่นใจถูกต้อง เมื่อจำเอาตัวอย่างที่โมเดลมีค่าความมั่นใจที่ 0.8 หรือ 80% ทั้งหมดมา เราควรจะพบว่าคำตอบควรจะถูกต้องอยู่ที่ 80% จากข้อมูลทั้งหมดด้วยเช่นกัน ตัวอย่างเช่นปัญญาประดิษฐ์ที่ใช้จำแนกสายพันธุ์สุนัขจากภาพ ถ้าเราพบว่ามีภาพสุนัขทั้งหมด 1,000 ภาพที่ถูกจำแนก พร้อมกับมีค่าความมั่นใจที่ 0.8 ทั้งหมด เราก็ควรจะคาดหวังได้ว่าการจำแนกจะถูกต้องประมาณ 800 ภาพ หรือก็คือ 80%

ค่าความมั่นใจดังกล่าวย่อมส่งผลต่อการตัดสินใจเชื่อหรือไม่เชื่อคำตอบนั้น และการกระทำต่าง ๆ ที่ตามมาจากข้อสรุปนั้นทั้งหมด ถ้าโมเดลทำนายหุ้นบอกว่าหุ้น A จะขึ้นด้วยความมั่นใจ 70% เราก็อาจจะลงทุนด้วยจำนวนเงินที่น้อย แต่ลงเงินกับหุ้น B ที่โมเดลบอกว่าขึ้น 95% เป็นต้น อย่างไรก็ดีจากการศึกษาพบว่าปัญญาประดิษฐ์สมัยใหม่ที่ใช้ Deep Neural Network ที่มีชั้นและความซับซ้อนมาก มักพบว่าให้ค่าความมั่นใจที่ไม่ตรงกับอัตราความถูกต้องของคำตอบจริง

5. Explainability – ตัดสินใจแล้วควรจะต้องอธิบายได้ว่าเพราะอะไร

เมื่อเราใช้ปัญญาประดิษฐ์ตัดสินใจบางอย่างแล้วเกิดผลที่ตามมา ซึ่งอาจเป็นสิ่งที่ไม่พึงประสงค์สำหรับบางคน เช่น เมื่อสแกนใบหน้าไม่ผ่านทำให้เข้าประตูไม่ได้ หรือปัญญาประดิษฐ์ประเมินราคารถยนต์จากภาพถ่ายตีราคาออกมาต่ำกว่าที่ผู้เสนอขายคาดหวัง เป็นต้น สิ่งเหล่านี้ควรสามารถอธิบายเหตุผลของการทำนายนั้นได้ด้วย การสแกนใบหน้าที่ไม่ผ่านอาจเป็นเพราะผู้ใช้ลืมถอดแว่นกันแดด ระบบก็อาจจะบอกเหตุผลเพื่อให้ปรับปรุงและลองอีกครั้ง

ยิ่งความซับซ้อนมีมากขึ้นเท่าไหร่ ความยากในการอธิบายเหตุผลก็มีมากขึ้นเรื่อย ๆ ในความเป็นจริงแล้วระบบสามารถอธิบายออกมาได้เพียงระดับเบื้องต้น เช่นในกรณีของข้อมูลภาพ อาจจะมีการทำ Heatmap บอกว่าส่วนไหนของภาพที่ส่งผลต่อการตัดสินใจ แต่ก็ไม่สามารถบอกเป็นเหตุผลมาอย่างชัดเจนได้ว่าเพราะอะไร

AI คือ
Selvaraju, Ramprasaath R., et al. “Grad-cam: Visual explanations from deep networks via gradient-based localization.” Proceedings of the IEEE international conference on computer vision. 2017. 
[bibtex]

ในกรณีที่ระบบมีการตัดสินใจที่ส่งผลต่อความปลอดภัยของผู้ใช้อย่าง Self-Driving Car การตัดสินใจบางอย่างที่นำมาซึ่งความผิดพลาดและอาจทำให้เกิดการสูญเสียทรัพย์สิน หรืออาจถึงขั้นเสียชีวิต การอธิบายได้ว่าระบบตัดสินใจอะไร เพราะอะไร ช่วยเพิ่มความมั่นใจของผู้ใช้ระบบ เพราะจะทำให้มั่นใจได้ว่าการตัดสินใจต่าง ๆ นั้นอยู่บนหลักการและเหตุผลที่ถูกต้อง และมีส่วนสำคัญอย่างมากเมื่อต้องสืบหาสาเหตุของอุบัติเหตุที่อาจเกิดขึ้นอย่างไม่คาดคิด

ปัญหาทั้งหมดที่เล่ามาทำให้การใช้งานปัญญาประดิษฐ์ในชีวิตจริงยังไม่แพร่หลายเท่ากับการที่นักวิเคราะห์เทรนด์ของอนาคตบอกไว้ นักวิจัยยังคงต้องใช้เวลาอีกสักพักเพื่อที่จะเข้าใจการทำงานของมันให้มากขึ้น และนำเสนอวิธีการที่จะทำให้ได้ผลลัพธ์ตามที่ต้องการ ซึ่งวิธีการนั้นอาจนำมาซึ่งการใช้ทรัพยากรมนุษย์ในการพัฒนาปัญญาประดิษฐ์ที่มากขึ้น หรือทรัพยากรคอมพิวเตอร์เพื่อการประมวลผล ซึ่งอาจต้องใช้เงินจำนวนมหาศาลในการเอาชนะปัญหาเหล่านี้

ผู้เขียนในฐานะอดีตนักวิจัยก็ยังติดตาม เอาใจช่วย และคาดหวังให้เทคโนโลยีปัญญาประดิษฐ์นั้นก้าวหน้าขึ้นในทุกวัน ด้วยความเชื่อที่ว่ามันจะมาช่วยทำให้ชีวิตมนุษย์ดีขึ้นได้ในอนาคต

เนื้อหาโดย อิงครัต เตชะภาณุรักษ์
ตรวจทานและปรับปรุงโดย พีรดล สามะศิริ

Peeradon Samasiri, PhD

Senior Project Manager & Data Scientist at Big Data Institute (Public Organization), BDI

© Big Data Institute | Privacy Notice